
Virtualization
Concepts And Applications

Yash Jain

DA-IICT

(DCOM Research Group)

Virtualization

 ‚Virtualization is a framework or methodology of dividing the

resources of a computer into multiple execution environments, by

applying one or more concepts or technologies such as hardware

and software partitioning, time-sharing, partial or complete

machine simulation, emulation, quality of service, and many

others..‛

The Virtual Machine Monitor

We’re used to a simple
equation, one physical
machine runs one OS at any
given time.

 By virtualizing the machine,
we are able to run several
operating systems (and all of
their applications) at the same
time.

Multi-tasking, Multi-threading

And Virtualization

Multi-tasking HyperThreading

Virtualization

A Virtualized Server Hosting Three Different Applications

Definitions
Virtual Machines

 A representation of a real machine using

software that provides an operating

environment which can run or host a guest

operating system. Virtual machines are created

and managed by virtual machine monitors.

Guest Operating System

 Operating system which is running inside the

created virtual machine.

Definitions (cont..)

Hypervisor

 A thin layer of software that generally provides

virtual partitioning capabilities, which runs

directly on hardware, but underneath higher-level

virtualization services, sometimes referred to as a

‚bare metal‛ approach.

Definitions (cont<)

Virtual Machine Monitor

 Recent articles use the terms like hypervisor and virtual machine

monitor interchangeably, but they are separated two in conceptual

model.

 Software that runs in a layer between host operating system and one

or more virtual machines that provides the virtual machine

abstraction to the guest operating systems.

 With full virtualization, the virtual machine monitor exports a

virtual machine abstraction identical to a physical machine, so that

standard operating systems can run just as they would on physical

hardware.

Virtualization

 Virtualization enables enterprises to

• consolidate multiple servers without sacrificing

application isolation,

• scale their infrastructure as their needs grow,

• increase availability through dynamic

provisioning and relocation of critical systems.

 Examples of Virtual Machine Manager

 Xen, KVM, VMWare.

Virtualization

Hardware

Operating System

App App VMM

OS

Ap
p

Ap
p

Hardware

Hypervisor / VMM

OS

Ap
p

OS

Ap
p

OS

Ap
p

VM1 VM2 VM3

…

Concept 1 Concept 2

VM

The Traditional Server Concept

10

Web Server

Windows

IIS

App Server

Linux

Glassfish

DB Server

Linux

MySQL

EMail

Windows

Exchange

And if something goes wrong ...

11

Web Server

Windows

IIS

App Server

DOWN!

DB Server

Linux

MySQL

EMail

Windows

Exchange

The Traditional Server Concept

 System Administrators often talk about servers as a whole

unit that includes the hardware, the OS, the storage, and the

applications.

 Servers are often referred to by their function i.e. the

Exchange server, the SQL server, the File server, etc.

 If the File server fills up, or the Exchange server becomes

overtaxed, then the System Administrators must add in a new

server.

12

The Traditional Server Concept

 Unless there are multiple servers, if a service

experiences a hardware failure, then the service is

down.

 System Admins can implement clusters of servers

to make them more fault tolerant. However, even

clusters have limits on their scalability, and not all

applications work in a clustered environment.

13

The Traditional Server Concept

Pros

 Easy to conceptualize

 Fairly easy to deploy

 Easy to backup

 Virtually any

application/service can

be run from this type of

setup

Cons

 Expensive to acquire and

maintain hardware

 Not very scalable

 Difficult to replicate

 Redundancy is difficult to

implement

 Vulnerable to hardware

outages

 In many cases, processor is

under-utilized

14

The Virtual Server Concept

15

Virtual Machine Monitor (VMM) layer

between

Guest OS and hardware

The Virtual Server Concept

 Virtual servers seek to encapsulate the server software away

from the hardware

• This includes the OS, the applications, and the storage for

that server.

 Servers end up as mere files stored on a physical box, or in

enterprise storage.

 A virtual server can be serviced by one or more hosts, and

one host may house more than one virtual server.

16

The Virtual Server Concept

 Virtual servers can still be referred to by their

function i.e. email server, database server, etc.

 If the environment is built correctly, virtual servers

will not be affected by the loss of a host.

 Hosts may be removed and introduced almost at

will to accommodate maintenance.

17

The Virtual Server Concept

 Virtual servers can be scaled out easily.

 If the administrators find that the resources supporting

a virtual server are being taxed too much, they can

adjust the amount of resources allocated to that virtual

server

 Server templates can be created in a virtual environment

to be used to create multiple, identical virtual servers

 Virtual servers themselves can be migrated from host to

host almost at will.
18

The Virtual Server Concept

Pros

 Resource pooling

 Highly redundant

 Highly available

 Rapidly deploy new

servers

 Easy to deploy

 Reconfigurable while

services are running

 Optimizes physical

resources by doing more

with less

Cons

 Slightly harder to

conceptualize

 Slightly more costly (must

buy hardware, OS, Apps,

and now the abstraction

layer)

19

Why to virtualize?
 Flexibility: more than one instance

 Availability: temporary migration, if physical node is down

 Scalability: very easy to insert a physical node with the basic

cluster

 Hardware utilization: virtual machines utilize hardware

resources that are left idle

 Security: Using multiple virtual machines, it is possible to

separate services by running one service on each virtual

machine. This approach is also called jailing of services.

Types of Virtualization

 Two kinds of virtualization approaches available

according to VMM

 Hosted When VMM runs in a operating system,

 Bare-metal approach runs VMM on top of

hardware directly.

• Fairly complex to implement but good in

performance.

Types of Virtualization (cont)
Emulation

 A virtual machine simulates the entire hardware

set needed to run unmodified guests for

completely different hardware architectures.

 Used to create new Operating Systems for the

hardware which is in design phase and not in

physical form

 Examples: Bochs and QEMU

Types of Virtualization (cont)
Full Virtualization

 Native virtualization.

 It is similar to emulation except it is designed to simulate the

underlying hardware which is physically available.

 Runs unmodified guests on a physical machine.

 It gives the flexibility to move entire virtual machines from

one host to another host very easily, but for the cost of

performance due to the overhead added by the emulator

Layer

 Examples: Virtual PC and VMware Workstation

Types of Virtualization (cont)
Full Virtualization

 VMware is the first commercial virtualization product provider for

x86 architecture.

 It has a bare metal product, ESX server.

 It enables the execution of unmodified guest operating systems

through on-the-fly translation of x86 instructions that can not be

virtualized.

 Vmware Player is a free hosted VMM by Vmware

 VirtualPC from Microsoft

 Hyper-V, a stand alone product and as a feature for Windows Server

2008, windows edition translates guest kernel mode and real mode

into x86 user mode

Types of Virtualization (cont)

Para Virtualization

 Used by Xen, Denali and VMware ESX

 The hypervisor exports a modified version of the

underlying physical hardware.

 It provides better performance than full

virtualization.

 Examples: user Mode Linux and Xen.

Types of Virtualization (cont)

OS level Virtualization

 No requirement of virtual machine monitor

software

 Single OS image handles all the guest images in

different isolated containers

 OS level virtualization does not support running

different operating systems (Specifically, different

kernel) at a time

 Examples: Virtuozzo, Linux VServers and

OpenVZ.

Types of Virtualization (cont)

Application Virtualization

 Referred as process virtualization.

 Application virtualization is the approach of

running applications inside a virtual execution

environment (Managed Run-time).

 The virtual execution environment provides a

standard API for cross platform execution and

manages the consumption of application’s local

resources, e.g.

 Threading model, environment variables, user

interface libraries and objects.

Types of Virtualization

Hardware Support
 Much of the virtualization overhead today are due to processors not being

designed with virtualization in mind

 Seminal paper by Popek, Goldberg (1974) provides basic guidelines

 Efficient VMM can be designed if:

 Processor has protection mechanisms, and

 Privileged instructions that read/write system status must cause exceptions if

run at non-privileged level

 Modern microprocessors support protection (condition 1)

 However, second condition rarely satisfied

 E.g. Intel ‘x86’: 17 problematic instructions, E.g.: POPF instruction for setting

interrupt flag.

 SGDT, SIDT, PUSHF, POPF........

 VMs must use several software ‘tricks’ to circumvent problematic

instructions in processors such as Intel/AMD

 Processors are now being redesigned to support more efficient VMs

 Intel VT in dual-core ‚Yonah‛; AMD ‚Pacifica‛

x86 Privilege Rings

 x86 CPUs provide a range of protection levels also known as rings in

which code can execute. Ring 0 has the highest level privilege and is

where the operating system kernel normally runs. Code executing in

Ring 0 is said to be running in system space, kernel mode or

supervisor mode. All other code such as applications running on the

operating system operate in less privileged rings, typically Ring 3.

Rings in virtualization
Traditional systems

 Operating system runs in privileged mode in Ring 0 and

owns the hardware

 Applications run in Ring 3 with less privileges runs in

privileged mode in Ring 0

Virtualized systems

 VMM Guest OS inside VMs are fooled into thinking they

are running in Ring 0, privileged instructions are trapped

and emulated by the VMM

 Newer CPUs (AMD-V/Intel-VT) use a new privilege level

called Ring -1 for the VMM to reside allowing for better

performance as the VMM no longer needs to fool the

Guest OS that it is running in Ring 0.

X86 Processor Virtualization

 x86 architecture is not fully virtualizable

• Certain privileged instructions behave differently when run in

unprivileged mode

• Certain unprivileged instructions can access privileged state

 Instructions do not satisfy this, E.g.: POPF instruction for setting interrupt

flag.

• SGDT, SIDT, PUSHF, POPF........

 Techniques to address inability to virtualize x86

• Replace non-virtualizable instructions with easily virtualized ones

statically (Paravirtualization)

• Perform Binary Translation (Full Virtualization)

Binary Translator

Translator

Guest
Code

Translatio
n

Cache

CalloutsTC
Index

CPU
Emulation
Routines

Basic Blocks

vPC mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

Guest Code

Straight-line code

Control flow

Basic Block

Binary Translation

vPC mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

call HANDLE_CLI

and ebx, ~0xfff

mov [CO_ARG], ebx

call HANDLE_CR3

call HANDLE_STI

jmp HANDLE_RET

start

Guest Code Translation Cache

Binary Translation

vPC mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

mov [CPU_IE], 0

and ebx, ~0xfff

mov [CO_ARG], ebx

call HANDLE_CR3

mov [CPU_IE], 1

test [CPU_IRQ], 1

jne

call HANDLE_INTS

jmp HANDLE_RET

start

Guest Code Translation Cache

Controlling Control Flow

vEP
C

test eax, 1

jeq

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test eax, 1

jeq

call END_BB

call END_BB

start

Guest Code Translation Cache

ret

Controlling Control Flow

vEP
C

test eax, 1

jeq

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test eax, 1

jeq

call END_BB

call END_BB

Guest Code Translation Cache

ret

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call HANDLE_RET

eax == 0

find
next

Controlling Control Flow

vEP
C

test eax, 1

jeq

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test eax, 1

jeq

jmp

call END_BB

Guest Code Translation Cache

ret

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call HANDLE_RET

eax == 0

Controlling Control Flow

vEP
C

test eax, 1

jeq

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test eax, 1

jeq

jmp

call END_BB

Guest Code Translation Cache

ret

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call HANDLE_RET

eax == 1

find
next

mov [ecx], eax

call HANDLE_RET

Controlling Control Flow

vEP
C

test eax, 1

jeq

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

test eax, 1

jeq

jmp

jmp

Guest Code Translation Cache

ret

add ebx, 18

mov ecx, [ebx]

mov [ecx], eax

call HANDLE_RET

eax == 1

mov [ecx], eax

call HANDLE_RET

Issues with Binary Translation

 Translation cache index data structure

 PC Synchronization on interrupts

 Performance Overheads.

Virtualization Support In CPUs

 Software like VMWare are available then why do

we need hardware support?

 The advantage is that CPUs with virtualization

have some new instructions to control

virtualization.

 Moreover the design of VMMs/ Hypervisors would

be simpler.

 Improved performance.

How It Works..?
 Processors with virtualization technology have extra instruction set called

virtual machine extensions or VMX.

 There are two modes to run under virtualization: root operation and non-

root operation. Usually only the virtualization controlling software, called

Virtual Machine Monitor (VMM), runs under root operation, while operating

systems running on top of the virtual machines run under non-root

operation. Software running on top of virtual machines is also called ‛guest

software‚.

 To enter virtualization mode, the software should execute the VMXON

instruction and then call the VMM software. Then VMM software can enter

each virtual machine using the VMLAUNCH instruction, and exit it by using

the VMRESUME. If VMM wants to shutdown and exit virtualization mode,

it executes the VMXOFF instruction.

Memory Virtualization

 Guest OS sees flat ‚physical‛ address

space.

 Page tables within guest OS:

• Translate from virtual to physical

addresses.

 Second-level mapping:

• Physical addresses to machine

addresses.

 VMM can swap a VM’s pages to disk.

46

Memory Virtualization

Memory Virtualization

 Traditional way is to have the VMM maintain a

shadow of the VM’s page table

 The shadow page table controls which pages of

machine memory are assigned to a given VM

 When OS updates it’s page table, VMM updates the

shadow

I/O Virtualization
I/O Virtualization architecture consists of

 Guest driver

 Virtual device

 Communication mechanism between

virtual device and virtualization stack

 Virtualization I/O stack

 Physical device driver

 Real device

I/O Virtualization(Contd..)

Virtualization I/O stack

 Translates guest I/O addresses to

host addresses

 Handles inter Vm communication

 Multiplexes I/O requests from/to

the physical device

 Provides enterprise-class I/O

features to the Guest

I/O Virtualization(Contd..)

Scheduling
 BVT Scheduler: Virtual Machines are scheduled as per

their accumulated running time with a weighting factor

that allows some VMs to be given preference over

others. When a VM needs to run quickly , time is

borrowed from its future use by subtracting a warp

factor from its accumulated time.

 SEDF Scheduler: The deadlines are set according to a

per domain parameter called period. At the end of each

time slice, the next deadline is set to current time plus

period. The period can be used to determine the share

of the CPU each domain gets.

Open Virtualization Format
 OVF enables efficient, flexible, and secure distribution of enterprise software,

facilitating the mobility of virtual machines and giving customers vendor and

platform independence.

 Customers can deploy an OVF formatted virtual machine on the virtualization

platform of their choice.

 The proposed format accepted by Distributed Management Task Force(DMTF)

uses existing packaging tools to combine one or more VM together with a

standards-based XML wrapper that provides the virtualization platform -- from

VMware, Microsoft, Citrix, or others -- a portable package, which includes

installation and configuration parameters for the VMs.

 The OVF could also help IT managers understand how virtual machines have

been changed throughout their lifecycle. For instance, if a VM template is cloned

and that clone has changed from the master template, IT managers need to

know what has changed to be able to troubleshoot performance problems on the

VM.

Case Study
 Qualcomm is an global leader in providing high-value wireless data solutions. The

company pioneered Code Division Multiple Access (CDMA) technology, and their

Network Management Center processes more than 7M transactions/day.

 Qualcomm started a Server Consolidation Project in the first half of 2003. Today, 60% of

Qualcomm’s x86 environment is virtualized (1900 total servers/1150 are virtualized).

The number of physical servers has grown from 950 to 1900 over the past 2.5 years, and

because of the much simplified provisioning with virtualization, they have been able to

maintain the same number of server admin's today. They provision 68 new

VM's/month. This would be impossible in the physical world without dramatic staffing

increases. Which means that the number of physical servers a single sys admin can

manage has more than doubled. This translates into substantial operational savings for

the company.

 In aggregate, they've saved $4.5M over 3 yrs with VMware. This calculation doesn't

include the additional cost for storage in the virtual world (all VM's are SAN connected

now), but it also doesn't include the cost savings from power, cooling etc.

Why not to virtualize?

 Overhead: Performance is often being

compromised due to flexibility

 Single point of failure: Even though the virtual

machine is decoupled from the hardware, it is still

dependent on the hardware working.

55

Virtualization in cloud

Architecture of cloud computing

‚A Cloud is a type of parallel and
distributed system consisting of a
collection of interconnected and
virtualized computers that are
dynamically provisioned and presented
as one or more unified computing
resources based on service-level
agreements (SLA) established through
negotiation between the service provider
and consumers.‛

Open Source IaaS Cloud Platforms
OpenNebula, Haizea, XenCloud, and
Eucalyptus etc.

Open Source VMMs
Xen, KVM, Linux VServer, and UML etc.

OpenNebula And Haizea

 OpenNebula is Virtual Infrastructure (VI) software toolkit, which is used to

control a VMs lifecycle. It manages the VM image and storage, the network

fabric (such as DHCP) services to tie in VMs with the environment, and

hypervisors which create and control the VM. It can deploy groups of virtual

machines to be treated as a single unit.

 Haizea can be used to extend OpenNebula's scheduling capabilities,

allowing it to support advance reservation of resources and queueing of best

effort requests. OpenNebula and Haizea complement each other, since

OpenNebula provides all the enactment muscle (OpenNebula can manage

Xen, KVM, and VMWare VMs on a cluster) and Haizea provides the

scheduling brains.

References

1. ‚Virtualization and Cloud Computing‛ , Norman
Wilde and Thomas Huber, University Of West
Florida.

2. ‚Introduction to virtualization: Get started with
ESXi‛, Vmware .

3. ‚Virtual Machine Monitors‛ , Dr. Marc E. Fiuczynski,
Princeton University.

4. ‚Virtualization In Linux‛, Atul Bansal, Manish Pal,
Pulkit Gambhir.

5. ‚Virtual Machines : CPU Virtualization‛, Scott
Devine, VMWare Inc.

6. ‚Virtual Machines : Device Virtualization‛, Scott
Devine, VMWare Inc.

References (Cont<)
7. ‚I/O Architectures for Virtualization‛, Mallik

Mahalingam, VMWare Inc.

8. ‚Virtual Machines : Memory Virtualization‛, Scott
Devine, VMWare Inc.

9. ‚Resource Management for Virtualized Systems ‛, Carl
Waldspurger, VMWare Inc.

10. ‚Cloud Computing: Concepts And Applications‛, Prof
Sanjay Chaudhary, DA-IICT

11. ‚Intel Virtualization Technology (VT) Explained‛,
available at
http://www.hardwaresecrets.com/printpage/263

12. ‚Open Virtualization Format for Virtual Machines‛,
available at
http://www.vmware.com/appliances/getting-
started/learn/ovf.html

http://www.hardwaresecrets.com/printpage/263
http://www.vmware.com/appliances/getting-started/learn/ovf.html
http://www.vmware.com/appliances/getting-started/learn/ovf.html
http://www.vmware.com/appliances/getting-started/learn/ovf.html

