Virtualization technology

If one had to choose a single technology that has been most influential in
enabling the cloud computing paradigm, it would have to be virtualization.
As we have seen earlier in Chapter 1, virtualization is not new, and dates back
to the early mainframes as a means of sharing computing resources amongst
users. Today, besides underpinning cloud computing platforms, virtualiza-
tion is revolutionizing the way enterprise data centers are built and managed,
paving the way for enterprises to deploy ‘private cloud’ infrastructure within
their data centers.

8.1 VIRTUAL MACHINE TECHNOLOGY

We begin with an overview of virtual machine technology: In general, any
means by which many different users are able simultaneously to interact with
a computing system while each perceiving that they have an entire ‘virtual
machine’ to themselves, is a form of virtualization. In this general sense, a
traditional multiprogramming operating system, such as Linux, is also a form
of virtualization, since it allows each user process to access system resources
oblivious of other processes. The abstraction provided to each process is
the set of OS system calls and any hardware instructions accessible to user-
level processes. Extensions, such as ‘user mode Linux’ [17] offer a more
complete virtual abstraction where each user is not even aware of other user’s
processes, and can login as an administrator, i.e. ‘root,’ to their own seemingly

89

20 VIRTUALIZATION TECHNOLOGY

private operating system. ‘Virtual private servers’ are another such abstraction
[36]. At a higher level of abstraction are virtual machines based on high-level
languages, such as the Java virtual machine (JVM) which itself runs as an
operating system process but provides a system-independent abstraction of
the machine to an application written in the Java language. Such abstractions,
which present an abstraction at the OS system call layer or higher, are called
process virtual machines. Some cloud platforms, such as Google’s App Engine
and Microsoft’s Azure, also provide a process virtual machine abstraction in
the context of a web-based architecture.

More commonly, however, the virtual machines we usually refer to when
discussing virtualization in enterprises or for infrastructure clouds such
as Amazon’s EC2 are system virtual machines that offer a complete hard-
ware instruction set as the abstraction provided to users of different virtual
machines. In this model many system virtual machine (VM) instances share
the same physical hardware through a virtual machine monitor (VMM), also
commonly referred to as a hypervisor. Each such system VM can run an inde-
pendent operating system instance; thus the same physical machine can have
many instances of, say Linux and Windows, running on it simultaneously.
The system VM approach is preferred because it provides complete isolation
between VMs as well as the highest possible flexibility, with each VM seeing
a complete machine instruction set, against which any applications for that
architecture are guaranteed to run.

It is the virtual machine monitor that enables a physical machine to be
virtualized into different VMs. Where does this software itself run? A host
VMM is implemented as a process running on a host operating system that
has been installed on the machine in the normal manner. Multiple guest
operating systems can be installed on different VMs that each run as operating
system processes under the supervision of the VMM. A native VMM, on the
other hand, does not require a host operating system, and runs directly on
the physical machine (or more colloquially on ‘bare metal’). In this sense,
a native VMM can be viewed as a special type of operating system, since it
supports multiprogramming across different VMs, with its ‘system calls’ being
hardware instructions! Figure 8.1 illustrates the difference between process
virtual machines, host VMMs and native VMMs. Most commonly used VMMs,
such as the open source Xen hypervisor as well as products from VMware are
available in both hosted as well as native versions; for example the hosted
Xen (HXen) project and VMware Workstation products are hosted VMMs,
whereas the more popularly used XenServer (or just Xen) and VMware ESX
Server products are native VMMs.

8.1 Virtual machine technology 91

c C c c
92 S 9 o
T ® T T
o (5} o o c c c c
51| [s s || SIERRERIE s|ls
2llelle 2|2 2ll&] |83 g||E
% Sé Eé Guest 0S Guest 0S g£1|8 gl &
<C <C <€
Virtual Machine Monitor Guest OS Guest OS
VM VM VM (Host VMM)
Virtual Machine Monitor
Operating system Operating system (Native VMM)
Hardware Hardware Hardware
Process Virtual Machines System Virtual Machines System Virtual Machines
(Host) (Native)

Ficure 8.1. Virtual machines

In the next section we shall briefly describe how system virtual machines
are implemented efficiently and how individual virtual machines actually run.

8.1.1 System virtual machines

A system virtual machine monitor needs to provide each virtual machine
the illusion that it has access to a complete independent hardware system
through a full instruction set. In a sense, this is very similar to the need
for a time-sharing operating system to provide different processes access to
hardware resources in their allotted time intervals of execution. However,
there are fundamental differences between the ‘virtual machine’ as perceived
by a traditional operating system processes and a true system VM:

1. Processes under an operating system are allowed access to hardware
through system calls, whereas a system VMM needs to provide a full
hardware instruction set for use by each virtual machine

2. Each system virtual machine needs to be able to run a full operating system,
while itself maintaining isolation with other virtual machines.

Going forward we will focus our discussion on native VMMs that run
directly on the hardware, like an operating system; native VMMs are more
efficient and therefore the ones used in practice within enterprises as well
as cloud platforms. One way a native system VMM could work is by emu-
lating instructions of the target instruction set and maintaining the state of

92 VIRTUALIZATION TECHNOLOGY

different virtual machines at all levels of memory hierarchy (including reg-
isters etc.) indirectly in memory and switching between these as and when
required, in a manner similar to how virtual memory page tables for dif-
ferent processes are maintained by an operating system. In cases where the
target hardware instruction set and actual machine architecture are different,
emulation and indirection is unavoidable, and, understandably, inefficient.
However, in cases where the target instruction set is the same as that of
the actual hardware on which the native VMM is running, the VMM can be
implemented more efficiently.

An efficient native VMM attempts to run the instructions of each of is
virtual machines natively on the hardware, and while doing so also maintain
the state of the machine at its proper location in the memory hierarchy, in
much the same manner as an operating system runs process code natively as
far as possible except when required.

Let us first recall how an operating system runs a process: The process
state is first loaded into memory and registers, then the program counter is
reset so that process code runs from thereon. The process runs until a timer
event occurs, at which point the operating system switches the process and
resets the timer via a special privileged instruction. The key to this mecha-
nism is the presence of privileged instructions, such as resetting the timer
interrupt, which cause a trap (a program generated interrupt) when run in
‘user’ mode instead of ‘system’ mode. Thus, no user process can set the timer
interrupt, since this instruction is privileged and always traps, in this case to
the operating system.

Thus, it should be possible to build a VMM in exactly the same manner
as an operating system, by trapping the privileged instructions and running
all others natively on the hardware. Clearly the privileged instructions them-
selves need to be emulated, so that when an operating system running in a
virtual machine attempts to, say, set the timer interrupt, it actually sets a
virtual timer interrupt. Such a VMM, where only privileged instructions need
to be emulated, is the most efficient native VMM possible, as formally proved
in [45].

However, in reality it is not always possible to achieve this level of effi-
ciency. There are some instruction sets (including the popular Intel 1A-32,
better known as x86) where some non-privileged instructions behave differ-
ently depending on whether they are called in user mode or system mode. Such
instruction sets implicitly assume that there will be only one operating system
(or equivalent) program that needs access to privileged instructions, a natural
assumption in the absence of virtualization. However, such instructions pose
a problem for virtual machines, in which the operating system is actually

8.1 Virtual machine technology 93

running in user mode rather than system mode. Thus, it is necessary for the
VMM to also emulate such instructions in addition to all privileged instruc-
tions. Newer editions of the x86 family have begun to include ‘hardware
support’ for virtualization, where such anomalous behavior can be recti-
fied by exploiting additional hardware features, resulting in a more efficient
implementation of virtualization: For example, Intel's VI-x (‘Vanderpool’)
technology includes a new VMX mode of operation. When VMX is enabled
there is a new ‘root’ mode of operation exclusively for use by the VMM; in
non-root mode all standard modes of operation are available for the OS and
applications, including a ‘system’ mode which is at a lower level of privilege
than what the VMM enjoys. We do not discuss system virtual machines in
more detail here, as the purpose of this discussion was to give some insight
into the issues that are involved through a few examples; a detailed treatment
can be found in [58].

8.1.2 Virtual machines and elastic computing

We have seen how virtual machine technology enables decoupling physical
hardware from the virtual machines that run on them. Virtual machines can
have different instruction sets from the physical hardware if needed. Even if
the instruction sets are the same (which is needed for efficiency), the size and
number of the physical resources seen by each virtual machine need not be
the same as that of the physical machine, and in fact will usually be different.
The VMM partitions the actual physical resources in time, such as with I/O
and network devices, or space, as with storage and memory. In the case of
multiple CPUs, compute power can also be partitioned in time (using tradi-
tional time slices), or in space, in which case each CPU is reserved for a subset
of virtual machines.

The term ‘elastic computing’ has become popular when discussing cloud
computing. The Amazon ‘elastic’ cloud computing platform makes extensive
use of virtualization based on the Xen hypervisor. Reserving and booting
a server instance on the Amazon EC cloud provisions and starts a virtual
machine on one of Amazon’s servers. The configuration of the required virtual
machine can be chosen from a set of options (see Chapter 5). The user of
the ‘virtual instance’ is unaware and oblivious to which physical server the
instance has been booted on, as well as the resource characteristics of the
physical machine.

An ‘elastic’ multi-server environment is one which is completely virtual-
ized, with all hardware resources running under a set of cooperating virtual

94 VIRTUALIZATION TECHNOLOGY

machine monitors and in which provisioning of virtual machines is largely
automated and can be dynamically controlled according to demand. In gen-
eral, any multi-server environment can be made ‘elastic’ using virtualization
in much the same manner as has been done in Amazon’s cloud, and this is
what many enterprise virtualization projects attempt to do. The key success
factors in achieving such elasticity is the degree of automation that can be
achieved across multiple VMMs working together to maximize utilization.
The scale of such operations is also important, which in the case of Amazon’s
cloud runs into tens of thousands of servers, if not more. The larger the scale,
the greater the potential for amortizing demand effciently across the available
capacity while also giving users an illusion of ‘infinite’ computing resources.

Technology to achieve elastic computing at scale is, today, largely pro-
prietary and in the hands of the major cloud providers. Some automated
provisioning technology is available in the public domain or commercially
off the shelf (see Chapter 17), and is being used by many enterprises in their
internal data center automation efforts. Apart from many startup companies,
VMware’s VirtualCentre product suite aims to provide this capability through
its ‘VCloud’ architecture.

We shall discuss the features of an elastic data center in more detail later in
this chapter; first we cover virtual machine migration, which is a pre-requisite
for many of these capabilities.

8.1.3 Virtual machine migration

Another feature that is crucial for advanced ‘elastic’ infrastructure capabilities
is ‘in-flight’ migration of virtual machines, such as provided in VMware’s VMo-
tion product. This feature, which should also be considered a key component
for ‘elasticity,” enables a virtual machine running on one physical machine
to be suspended, its state saved and transported to or accessed from another
physical machine where it is resumes execution from exactly the same state.

Virtual machine migration has been studied in the systems research com-
munity [49] as well as in related areas such as grid computing [29]. Migratinga
virtual machine involves capturing and copying the entire state of the machine
at a snapshot in time, including processor and memory state as well as all vir-
tual hardware resources such as BIOS, devices or network MAC addresses. In
principle, this also includes the entire disk space, including system and user
directories as well as swap space used for virtual memory operating system
scheduling. Clearly, the complete state of a typical server is likely to be quite
large. In a closely networked multi-server environment, such as a cloud data

8.2 Virtualization applications in enterprises 95

center, one may assume that some persistent storage can be easily accessed
and mounted from different servers, such as through a storage area network
or simply networked file systems; thus a large part of the system disk, includ-
ing user directories or software can easily be transferred to the new server,
using this mechanism. Even so, the remaining state, which needs to include
swap and memory apart from other hardware states, can still be gigabytes in
size, so migrating this efficiently still requires some careful design.

Letus see how VMware’s VMotion carries out in-flight migration of a virtual
machine between physical servers: VMotion waits until the virtual machine
is found to be in a stable state, after which all changes to machine state start
getting logged. VMotion then copies the contents of memory, as well as disk-
resident data belonging to either the guest operating system or applications, to
the target server. This is the baseline copy; it is not the final copy because the
virtual machine continues to run on the original server during this process.
Next the virtual machine is suspended and the last remaining changes in
memory and state since the baseline, which were being logged, are sent to the
target server, where the final state is computed, following which the virtual
machine is activated and resumes from its last state.

8.2 VIRTUALIZATION APPLICATIONS IN ENTERPRISES

A number of enterprises are engaged in virtualization projects that aim to
gradually relocate operating systems and applications running directly on
physical machines to virtual machines. The motivation is to exploit the addi-
tional VMM layer between hardware and systems software for introducing a
number of new capabilities that can potentially ease the complexity and risk
of managing large data centers. Here we outline some of the more compelling
cases for using virtualization in large enterprises.

8.2.1 Security through virtualization

Modern data centers are all necessarily connected to the world outside via
the internet and are thereby open to malicious attacks and intrusion. A
number of techniques have been developed to secure these systems, such
as firewalls, proxy filters, tools for logging and monitoring system activity
and intrusion detection systems. Each of these security solutions can be
significantly enhanced using virtualization.

For example, many intrusion detection systems (IDS) traditionally run on
the network and operate by monitoring network traffic for suspicious behavior

